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ABSTRACT

These lecture notes present an introduction to gauge theories: the systema-
tics of Yang-Mills theories, spontaneous symmetry breaking, and Higgs mechanism.
The treatment is simple, stressing the general principles rather than detailed cal-
culations. We present the Weinberg-Salam model as an example of a renormalizable -
theory of weak and electromagnetic interactions of leptons, and we show that the
extension of these ideas into the hadronic world requires the introduction of charm
and colour. Finally, we try to include strong interactions into the scheme, guided
by the experimental results of deep-inelastic lepton-nucleon scattering. We derive
and solve the Callan-Symanzik equation, and we introduce the concepts of asymptotic

freedom and quark confinement.

FOREWORD

These are the notes of the lectures I gave at the 1977 CERN School of Physics.
They are not a review article! Therefore, they do not claim to exhaust a subject
which kept busy most high-energy theorists for the last years. They mainly con-
tain the basic ideas of gauge theories, namely the systematics of Yang-Mills theories
and the phenomenon of spontaneous symmetry breaking. These subjects have already
been exposed in several excellent review articles or lecture notes, so this report
is addressed primarily to those who have followed my lectures, as a supplement to
their own notes. No attempt has been made to describe detailed models of gauge
theories or to compare them with the recent experimental results. The emphasis
was on general principles, not specific applications. Finally, since the audience
was formed mainly by experimentalists, all the technical part of gauge theories
(quantization, Feymman rules, renormalization, etc.) has been omitted and several

theoretical arguments have been, often dangerously, oversimplified.
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INTRODUCTION

The idea of unifying weak and electromagnetic interactions is very old and
goes back to the classical work of Fermi. On the phenomenological level the two
forces present some common features, but also several important differences. On
the theoretical level, quantum electrodynamics was, for years, the only consistent
and successful theory we had in elementary particle physics. It provided the
archetype for any other physical theory. It is essentially based on a very general
technique, called perturbation theory. Let H be the Hamiltonian describing the
dynamics of a physical system. In principle, we would know everything about the

system, if we could solve the eigenvalue problem:

HY, = E\V, , a.n

where E  are the eigenvalues and Y, the eigenfunctions of H. Unfortunately, the
exact solution of (1.1) is unknown for all but some very simple systems, and in
practice we are obliged to use some kind of approximation schemes. Perturbation

theory amounts to splitting H into two parts:

H= H,+2aH; (1.2)

where Hy, called the "unperturbed part of H" is a Hamiltonian chosen so that the
solution of the eigenvalue problem is known exactly and AH; is called the
"perturbation'"; A is some parameter which characterizes the strength of the per-
turbation. The idea is to find a splitting such that AH; is a relatively small
part of H. Then, we solve the eigenvalue problem of H, and calculate the correc-
tions on the eigenvalues and eigenfunctions, induced by the presence of the per-
turbation, as a series in powers of A. Theoretically, there may be more than one
way to obtain such a splitting of the total Hamiltonian, leading to more than one
possible perturbation expansion, but in practice the choice is very limited. In
a relativistic quantum field theory in four space-time dimensions, the only eigen-
value problem which is always exactly solvable is that of a free field theory,
i.e. if H, describes a system of free particles. Consequently, we are obliged

to include in the perturbation part AH;, the entire interaction Hamiltonian.
Furthermore, the complexity of the calculations is such that we can only compute
the first few terms in the power series expansion. Obviously, such a scheme has
some chances to give sensible results only if the entire interaction is "weak".

This means, physically, that the energy due to the interactions must be small
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compared to the kinetic energies and masses of the particles which are included
in Hy. Technically this is translated to the requirement that A, the "strength"
of the interaction, is a small number, A << 1. In quantum electrodynamics this
parameter is the fine structure constant o which equals 1/137. This small number
is responsible for the practical successes of QED because successive terms in
the perturbation expansion are proportional to increasing powers of o, so they
get smaller and smaller, and a good approximation is obtained by keeping only

the first few of them.

Given this great success, we are naturally tempted to apply the same method
to the other interactions. Unfortunately this is not straightforward. In strong
interactions we can still, formally, write the analogue of Eq. (1.2), but the
corresponding parameter A turns out to be large, A 2 1, and the approximation
scheme breaks down. This means physically that, for a system of hadromns, the
energy due to their strong interactions is not a small part of their total energy.
Then what about weak interactions? We know, experimentally, that they are indeed
weaker than the electromagnetic ones and, therefore, we expect here perturbation
theory to give even better results, But we now face a different problem: as
everybody knows, calculations in quantum field theory are not so simple. The
Feynman rules, if applied blindly, give meaningless results for all but the
lowest-order terms, because all higher terms turn out to be divergent. Perturba-
tion theory must be supplemented with a well-defined algorithm, called
"renormalization theory", whose purpose is to extract meaningful finite answers
out of the divergent expressions of the perturbation expansion., This algorithm
had been invented in order to be applied to QED, and it turned out that it did
not apply to the theory that described, phenomenologically, the weak interactioms.
Several people have tried, without success, to invent a new algorithm adapted to
the Fermi theory of weak interactions, and finally the solution came from the
opposite direction: the algorithm remained the same, but the phenomenological
theory was replaced by a different one. The remarkable thing is that this new
theory, which is far more beautiful from the aesthetic point of view, has dif=-
ferent experimental consequences, and it now seems that they are verified. It
looks like the old prejudice, that the search for internal consistency and
aesthetic beauty always leads to a deeper understanding of the physical world,

is once more confirmed.

PHENOMENOLOGY

Weak interaction phenomena were, until 1971, well described by a simple
phenomenological model involving an operator Jx(x), the "weak current', which is

the analogue of the familiar electromagnetic current,
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This is the famous current X current theory and G/v2 is the Fermi coupling con-—

stant, which is equal to 10™°m_2 .
proton

parts, a leptonic part Rx(x) and a hadronic one hx(x). They are both of the

The weak current JA(X) is a sum of two

V-A form and satisfy simple algebraic relations. The leptonic current can be

written in terms of the fields of known leptons as:
o= KO (Y5 IV, G0+ 80 ), Cty ), @

where we have used the letters u, e, vu, and Ve to denote the field operators of
the corresponding particles. No simple expression exists for hx(x) in terms of
the fields of known hadrons. It may take several forms depending on which par-
ticles we consider as elementary. What is more important, from the phenomeno-
logical point of view, is to know the general structure and the symmetry properties
of hx(x). It was a very important discovery =-- which took several years and is
due to the work of several people —— when it was finally established that the
weak hadronic current hx(x) can be identified with the currents of the chiral
symmetry group SU(3) x SU(3) of the strong interactions. These properties can
most easily be exhibited, for pure illustrative purposes, in a simple quark model.
Let p(x), n(x), and A(x) represent the fields of the three quarks; then hx(x) is

given by:
k;cﬂ: ﬁcxsmcﬁm) Leosd naxr+ 5w Yen] , @3

where 6 is the Cabibbo angle,

Let me emphasize at this point that, despite its phenomenological character,
(2.1) is an elegant structure that is rarely found in elementary particle physics.
This simple and compact form could not only fit a large variety of data, but also
it incorporated the physical principles of CVC,universality and algebraic proper-
ties that we mentioned above. Thus, at the phenomenological level, we had a
perfectly working scheme; there was no compelling experimental reason to try to
change it, It described correctly all experimental results which were inside its
natural domain, namely all data which could definitely be attributed to weak
interactions. In other words, if we could only forget for a moment that there

was not much of a theory after all, and that the whole structure was just a

-39_



phenomenological description of the data, we would have every reason to be
satisfied —— especially if we compared it with the situation in strong inter-
actions, in which there was also no consistent theory, but there was no elegance
either. And yet we were not happy! What we wanted was not a phenomenological
scheme, but a physical theory. Yang-Mills theories were studied not because they
fitted the data better, but rather because of their aesthetic beauty. As a
matter of fact, at first —- and to a lesser extent even today —-- it looks as

though we had to pay a high price for the elegance they were giving us.

As we said in the Introduction, the model out of which we were getting our
inspiration was QED. The first step towards unification was the intermediate

vector boson hypothesis. The Lagrangian (2.1) was replaced by:
{ = IACX)W Cx) + h.c. (2.4)
w-F p )

where Wk(x) is the field of a charged vector boson, which in weak interactions
is supposed to play the role that the photon plays in QED. The relation between

the semi-weak coupling constant g and G of Eq. (2.1) is

2
9__ n~ ._j'__ (2.5)
Y2 mzw

with w being the W mass.

Until quite recently (2.4) described all weak interaction phenomena with
only a charged current, but, as you all know, neutral weak currents have been
discovered, so we need today at least three intermediate vector bosons with
charges +, -, and zero. Actually, the neutral currents arise naturally in gauge
theories (you need special ingenious constructions, such as the Georgi-Glashow
model, to make them disappear), and therefore they provided the first strong
encouragement that with gauge theories we were on the right track. We had been
going through many lean years in particle physics, and we are still amazed by the
jidea that, triggered off by purely theoretical considerations, we came across a

great experimental discovery.

The Lagrangian (2.4) now looks very similar to QED since they both describe
the interaction of a vector boson with an appropriate current. However, there
are some important differences which cause the renormalization program to work
for QED but not for (2.4). From the physical point of view these differences

are the following.
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i) The electromagnetic interactions have a long range -- the photon is massless.
Weak interactions give rise to short-range forces —- the intermediate vector

bosons, if they exist at all, must be very massive (mW 2 10-15 GeV).
ii) The electromagnetic current is conserved, the weak current is not
A
(BAJ (x) # 0).
iii) The photon is neutral. The W's come in three charge states.
These physical differences imply several technical ones, the most important
of which concerns the vector boson propagators. We know that the photon propagator

is given, in the Feynman gauge, by guv/kz, and therefore behaves, at large momenta,

like k™ 2. The W-propagator, however, because of its non-zero mass, is given by

1 _ buby
e (e 300

which goes asymptotically like a constant. Therefore, if we look at fermion-

fermion scattering through the exchange of two vector bosons, i.e. the diagrams

of Fig. 1,
e e e e \% e
— - - — - —

oY
<Y
oY
<y

(a) (b)

Fig. 1

we obtain, for the QED diagram (a), an integral which behaves, for large loop

momentum, like:
3
Sﬂ_\i’_ - finite ,
while for diagram (b) the corresponding expression is

— ~+ quadratically divergent

2

g d,
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because we no longer have the two K 2 convergence factors of the two photon
propagators. Therefore, the Lagrangians (2.4) or (2.1), were uniquely used at
the lowest possible order of perturbation theory and mno higher-order corrections

could be calculated. They were purely phenomenological objects.

Let us now try to solve the following seemingly hopeless problem: Is it
possible to modify the Lagrangian (2.4) in such a way that we obtain a renor-
malizable field theory without upsetting its nice agreement with experiment? We
all know that the answer is Yes and, in fact, we can go a long way towards the
correct theory by a careful study of the one-loop diagrams. We will skip this
part and apply instead an old theoretical prejudice which says that the best
behaving theory is the most symmetric one. Notice that this was also the way
things happened historically. The most symmetric way to couple neutral and
charged vector bosons together is given by the Yang-Mills theories, which we

shall study next.

GAUGE SYMMETRIES

At the basis of every symmetry principle in physics there is an assumption
that some quantity is not measurable. For example, the assumption that there is
no absolute position in space leads to the invariance under translations. Here
we shall be interested in internal symmetries, i.e. transformations which do not
affect the space-time point x. A simple example is given by the Lagrangian

density of a free fermion field Y(x):

-%o:-«\?cx\ Cig-myex), (3.1)

which is invariant under the phase transformation

Yoo —> e '%cxs (3.22)

- 1)
B\,,,\VO(\ — '&W‘y()(\ , (3.2b)

where 6 is an arbitrary, x-independent phase. Formula (3.2b) follows from (3.2a),
i.e. the derivative of the field transforms like the field itself. From Noether's
theorem, the invariance under (3.2a) implies the existence of a conserved current

of the form:

: = , e _
J_PC)()—\VCX)B"N\P(X) y O AW(X)..O . (3.3)
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The group of transformations (3.2) is the Abelian group U(1l).

We know in physics internal symmetries based on different groups. For
example, invariance under isospin transformations is based on the group SU(2).
The assumption is that the proton and the neutron are two different states of the
same particle, the nucleon, and they transform into each other by isospin rota-
tions, in the same way that the two spin states % of a proton transform into each
other by ordinary rotations. Similarly, we have the eightfold-way symmetry, based
on the group SU(3), or the charm scheme, based on SU(4), etc.

In general, let ¢1(x), i=1, ..., n, be a set of fields and £0[¢1(x),8u¢1(x)]
a Lagrangian density describing the dynamics of the system. An internal symmetry

is an invariance of L under a group G of transformations acting on the fields

o ()
cp;cx) — q:oicx) + eq(Tq)j CP"'CX\ Y (3.4a)

where for future convenience we have written the infinitesimal transformations,
. . . . . o
i.e. we have kept only the first-order terms in an expansion in powers of 6 .

The notation in (3.4) is:

N is the number of generators of G, i.e. the dimension of the associated
Lie algebra., It equals 1 for the U(l) transformatioms (3.2), 3 for SU(2),
8 for SU(3), etc.

T, are the matrices of the representation in which the fields ¢1(x) belong.

For example, if G = SU(2) and the ¢ 's form an isodoublet, T, = iTa,

T, being the familiar Pauli matrices. If the fields form an isovector,
i

then (Ta)j =€c .., etc.

oij

er

are N c-number, infinitesimal, x-independent parameters.

Since the parameters 6% are x-independent, the derivatives of the fields

transform like the fields themselves:

Such transformations, with x-independent parameters, will from now on be called

*)

"global" transformations '. Using again Noether's theorem we easily obtain, as a

consequence of the invariance of Qo under (3.4), N conserved currents.

*) They are sometimes called "gauge transformations of the first kind". I shall

not use this terminology here, because I want to reserve the name "gauge'" for
the transformations that will be introduced in the sequel.
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Let us go back to the simple Abelian example. The invariance of £ under
(3.2) means that the phase of the field y(x) is not measurable, therefore it can
be chosen arbitrarily. On the other hand, since it is x-independent, it must be
chosen the same over the entire universe and for all times. This situation is
clearly unsatisfactory on physical grounds. We would like instead to have a
formalism which would allow us to fix the phase locally in a region with the
dimensions of our experiment, without reference to far-away distances; in other

words we would like to replace (3.2a) by

6

1 §ex)
\\J(X) — e P Xy, (3.5a)

where O is now a function of x. I want to emphasize here that this requirement
is based on purely aesthetic arguments. If we adopt (3.5a) as a symmetry trans-—

formation, we face a serious problem, because now (3.2b) is replaced by:

1 60x) . 18¢cx)
?p"\’o‘) — e DW\V(XH i e \Y(X)D"’ch)’ (3.5b)

i.e. the derivative of the field no longer transforms like the field itself and,
as a result, the Lagrangian (3.1) is no longer invariant under (3.5). We shall
call transformations of the form (3.5), i.e. with x-dependent parameters, "local"

*
or "gauge" transformations ).

In differential geometry there is a standard way of restoring invariance
under (3.5). Since the trouble arises from the derivative operator, we must
introduce a new "derivative" DU’ called the "covariant derivative", which is again
a first-order differential operator, but with the property that it transforms
under (3.5a) like the field itself:

'Bx) D

Dr,q)(x)——% Q '«,‘V(” , (3.5¢)

In order to find such a Du, we first introduce the affine connection which, in
our language, is related to the 'gauge field" AU(X) and which, by definition,

transforms like:

/)'”(X) —_— AP()(H- % 'Br, Bex) (3.6)

with e a constant,

%) They are also called "gauge transformations of the second kind".
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We then define Du by

D‘N‘—S_'D‘”-I- ;QAP,

and it is easy to verify that Duw(x) does transform under (3.5a) and (3.6), as
does (3.5c).

3.7)

Invariance under gauge transformations is now restored by replacing
3u by DU everywhere in £

Lo—>%, = Yoo Ci F-w)y o) =

(3.8)

= g Cig-myw) - echx)bqu/(x)AtX)

The Lagrangian (3.8) is invariant under (3.5a) and (3.6), and it contains the

gauge field Au(x). If we want to interpret the latter as the field representing

the photon, we must add to (3.8) a term corresponding to its kinetic energy. This
term must be, by itself, gauge-invariant, and we are thus easily led to the final
Lagrangian

il

q v (3.9)

Ry Ly= X3 B oo Flo)

F‘.,vcx)z ?)'“ Acon- 3, At“ ) .

(3.10)

Equation (3.9) is nothing else but the familiar Lagrangian of quantum electro-
dynamics. We have obtained it by just imposing invariance under gauge transfor-

mations. A final remark is in order:

£, does not contain a term proportional
to AuAP, since such a term is not invariant under (3.6).

In other words, gauge
invariance forces the photon to be massless.

The same procedure can be applied to the non-Abelian transformations (3.4).

Again for aesthetic reasons we want to replace (3.4) by a group of local trans-—
formations in which 8% » e“(x):

: ' o i =1, -
P'o — @'co +8 ) (T, )} ®Iy =

The derivative 8u¢1(x) now picks up an extra term:
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B‘uq:»"cx) — 'a‘.,qJ 0+ 0% (Ta \;' Plexy +

(3.11b)

+ CTOJ" CP‘(X) 'BP,’@qm ,

This last term spoils the invariance of £,. The rule for restoring invariance

is again the same: we first introduce N gauge fields Wﬁ(x), which transform like:

a a a < b 4 Q
WY\'(X)'-% WP(X)"‘-beWPe -+ - ?r‘e ¢<x) (3.12)

with g a constant and be’ the structure constants of the group, given by
C .
LTa )Tb] - 'S:nb Te . (3.13)

Formula (3.12) is just the generalization to non-Abelian groups of the photon
transformation law (3.6). Notice that for the group U(1), f vanishes. 1In terms

of the gauge fields we now define a covariant derivative
D q:»‘cﬂ‘-"a q;icXX- (E)"' qucpjcx) (3.14)
» P % 10k

and we can verify, using (3.1la) and (3.12), that it transforms like the fields,

namely:
D‘n(p'.(x) —_ D'Ncp"(xn-@q(x)(‘)}); D’" P joﬂ- (3.11c)

Finally, everywhere in £, we replace 3u by DU:

Z, Cpion, By Pleop)—> X g0, Do gion) - o

£, is invariant under (3.1la) and (3.12) if £o was invariant under (3.4a). We
can further add a kinetic energy term for the gauge fields which again is deter-

mined by the requirement of gauge invariance:

- 1 L] \~v
’,{i‘-—> %2:‘11- m 6?"" Gq ) (3.16)
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a a b <
6 ‘,,v(x): Dl"‘ W, wo - ?VW;O() «—2ch WT’ W . (3.17)

Notice that, unlike the photons, non-Abelian gauge fields are self-coupled through

v . . s .. . .
the G vGu term which contains trilinear and quartic interaction terms., Notice

U
also that the gauge fields have still zero mass since a W W term is again non-
invariant under (3.12). Since no massless vector bosons, other than the photon,
are known in nature, it looks as if non-Abelian gauge symmetries have nothing to

do with physics in general and weak interactions in particular.

SPONTANEQUSLY BROKEN SYMMETRIES

4.1 Introduction

The realization that a physical problem possesses a certain symmetry often
simplifies its solution considerably. For example, let us calculate the electric
field at a point A produced by a
uniformly charged sphere (Fig. 2).
Eg One could solve the problem the
hard way by considering the field
//’_§\ / created by a little volume element
\ of the sphere and then integrating
\ over. But any student knows that
j it is sufficient to realize that
N , the problem has a spherical symmetry
and then Gauss's theorem for the
surface through A gives the answer
immediately. 1In this reasoning we
Fig. 2 have implicitly assumed that sym-
metric problems always possess
symmetric solutions. Stated in this form the assumption sounds almost obvious;
however, in practice, we need a much stronger one. Indeed, a real sphere is
never absolutely symmetric and the charge is never distributed in a perfectly
uniform way. Nevertheless, we still apply the above reasoning, hoping that small
deviations from perfect symmetry will induce only small departures from the
symmetric solutions. This, however, is a much stronger statement, which is far
from obvious, since it needs not only the existence of a symmetric solution but
also an assumption about its stability. And it is well known that this last

property 1is not always true.
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4.2 A simple classical example

A very simple counter example is provided by the problem of the bent rod.
z Let a cylindrical rod be charged as in
é Fig. 3. The problem is obviously symmet-
F
[l &/ 111/

ric under rotations around the z-axis.

Let z measure the distance from 0, and
X(z) and Y(z) give the deviations, along
the x and y directions respectively, of
the axis of the rod at the point z from
the symmetric position. For small
deflections the equations of elasticity

take the form:

1E<y+F&Y:O

4
TE Yy L ed¥ _, ,  (.1b)
Fig. 3 dz4 dzz '
where I = TR*/4 is the moment of inertia of the rod and E is the Young modulus.
It is obvious that the system (4.l1) always possesses a symmetric solution X = Y = 0.
However, we can also look for asymmetric solutions of the general form
X = A + Bz + C sin kz + D cos kz with k? = F/EI, which satisfy the boundary con-
ditions X = X" =0 at z = 0 and z = . We find that such solutions exist,
X = C sin kz, provided k% =nm; n =1, ... . The first such solution appears

when F reaches a critical value Fcr given by
TeET
ez.

The appearance of these solutions is already an indication of instability and,

FT

S—
e T

. (4.2)

indeed, a careful study of the stability problem proves that the non-symmetric
solutions correspond to lower energy. From that point Egs. (4.1) are no longer
valid, because they only apply to small deflections, and we must use the general
equations of elasticity. The result is that this instability of the symmetric

solution occurs for all values of F larger than Fcr'

What has happened to the original symmetry of the equations? It is still
hidden in the sense that we cannot predict in which direction in the x-y plane
the rod is going to bend. They all correspond to solutions with precisely the
same energy. In other words, if we apply a symmetry transformation (in this case
a rotation around the z-axis) to an asymmetric solution, we obtain another asym-

metric solution which is degenerate with the first one.
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We call such a symmetry "spontaneously broken'", and in this simple example
we see all its characteristics: There exists a critical point, i.e. a critical
value of some quantity (in this case the external force F; 1in several physical
systems it is the temperature) which determines whether spontaneous symmetry

breaking will take place or not. Beyond this critical point:
i) the symmetric solution becomes unstable;

ii) the ground state becomes degenerate.

There exist a great variety of physical systems, both in classical and quan-
tum physics, exhibiting spontaneous symmetry breaking, but we will not describe
any other one here. The Heisenberg ferromagnet is a good example to keep in mind,
because we shall often use it as a guide, but no essentially new phenomenon

appears outside the ones we saw already. Therefore, we shall go directly to some

field theory models.

4.3 Spontaneous breaking of a global symmetry

Let ¢(x) be a complex scalar field whose dynamics is described by the

Lagrangian density

L= GrI3") - ee*- ) (o gt ), .2

where £1 is a classical Lagrangian density and ¢ is a classical field. No quanti-
zation is considered for the moment. The Lagrangian ﬁl is invariant under the

group U(l) of global transformations
i 8
chx\——% e cP(X)‘ (4.4)

The Hamiltonian density of the system is given by

H = (3,2(2.0%) + 2 9>(3;9") + Vo) @.5)

Vap): p"qaq,*‘—v- 7 C<pq>*‘)z. (4.6)

The first two terms of J are positive. They can only vanish for ¢ = constant.
Therefore, the ground state of the system corresponds to ¢ = constant = minimum
of V(¢). V has a minimum only if A > 0. In this case the position of the mini-
mum depends on the sign of p?. (Notice that we are still studying a classical

field theory and p? is just a parameter. It should not be taken as a "mass".)
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For u? 2 0 the minimum is at ¢ = 0 (symmetric solution, Fig. 4a), but for 2 <o .
72

there is a whole circle of minima at the complex ¢-plane with radius v = (-u?/2})

(Fig. 4b). Any point on the circle corresponds to a spontaneous breaking of (4.b4):

v v

u?>0 L7 we<0

—>=V:<—

(a) (b)
Fig. 4

We see that

the critical point is u? = 0;

for u? 2 0: the symmetric solution is stable;

for uz < 0: spontaneous symmetry breaking occurs.

Let us assume that u2 < 0. In order to reach the stable solution we trans-—
late the field ¢. It is clear that there is no loss of generality by choosing a
particular point on the circle, since they are all obtained from any given one

by applying the transformations (4.4). Let us, for convenience, choose the point

on the real axis in the ¢-plame. We thus write
=L Tv + i .
P = = Lutyon+ iyl @)
Bringing (4.7) in (4.3) we find

2 2 2
{1 (@) _”{z('\h%\z %Caya‘)’) +j?: My )—4-2—(2)(/2)’\{/
_ 2 .2 _ 2. 2 (4.8)
AvYy (Y+x0) 7_'—('\{}+7( ) -
Notice that £, does not contain any term proportional to x2.

It should be emphasized here that £, and £, are completely equivalent
Lagrangians. They both describe the dynamics of the same physical system, and
a change of variables, such as (4.7), cannot change the physics. However, this

equivalence is only true if we can solve the problem exactly. In this case we
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shall find the same solution using either of them. However, we do not have exact
solutions and we intend to apply perturbation theory, which is an approximation
scheme. Then the equivalence is no longer guaranteed and, in fact, perturbation
theory has much better chances to give sensible results using one language rather
than the other*). In particular, if we use £, as a quantum field theory and we
decide to apply perturbation theory taking, as the unperturbed part, the quadratic
terms of £1’ we immediately see that we shall get nonsense., The spectrum of the
unperturbed Hamiltonian would consist of particles with negative square mass, and
no perturbation corrections, at any finite order, could change that. This is
essentially due to the fact that, in doing so, we are trying to calculate the
quantum fluctuations around an unstable solution, and perturbation theory is just
not designed to do so. On the contrary, we see that the quadratic part of £z
gives a reasonable spectrum; thus we hope that perturbation theory will also
give reasonable results. Therefore we conclude that our physical system, con-
sidered now as a quantum system, consists of two interacting scalar particles,
one with mass mi = 2\v2? and the other with m§ = 0. It is the spectrum that we

would have found also starting from £,, if we could solve the dynamics exactly.

The appearance of a zero-mass particle is an example of a general theorem
due to Goldstone: To every generator of a spontaneously broken symmetry there
corresponds a massless particle, called the Goldstone particle. This theorem i;
just the translation, into quantum field theory language, of the statement about
the degeneracy of the ground state we saw in the previous example. The ground
state of a system described by a quantum field theory is the vacuum state, and
you need massless excitations in the spectrum of states in order to allow for the

degeneracy of the vacuum.

Perhaps you will remember that we decided to study the phenomenon of spon—
taneous symmetry breaking, because we were in despair over the massless vector
bosons which seemed to plague gauge theories. We see that, up to this point, our
hopes were not justified. Far from arranging things, spontaneous symmetry break-
ing introduces its own massless particles, the Goldstone bosons, and now we have
two diseases to worry about instead of one. But here will come the miracle!

When combined together, the two diseases will cure each other. 1In order to see

this remarkable phenomenon we turn to the study of the spontaneous breaking of a

gauge symmetry.

*) This is an example of what S, Ciulli calls "broken tautology'". Two different
languages to describe the dynamics of a system may be completely equivalent
if solved exactly (tautologies), but they may give completely different
results when treated in an approximation scheme., For details, see S. Ciulli,
C. Pomponiu and I.S. Stefdnescu: Phys. Rep. 17C, 133 (1975).
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4.4 Spontaneous breaking of a gauge symmetry

We consider the same model of Eq. (4.3) but we impose invariance under local
U(l) transformations. According to the general rule of the previous section, this

is achieved by replacing Bu by Du and adding the photon kinetic energy term:

4
f": —-;:'-"- F;v-}- I(Bt”.', y e A'u3¢ [ - }q??‘\‘__h ((P?*)z. (4.9)

El is invariant under the gauge transformation:

19.¢x)
P> e gpcx) j A‘o - 'At" +1e'9r@m . %.10)

The same analysis as before shows that for A > 0 and u? < 0 there is a spontaneous

breaking of the gauge symmetry. Replacing (4.7) into (4.9) we obtain:

2, —~%, =

+i 0 uysz-r L OQpx)'- ! (2av)y? (4.11)

2
Q U /%

Fow + b

—ewh 'b'x-v- wupé'v\% ‘+eorms .

The surprising term is the second one which is proportional to Aﬁ. It looks as
though the photon has become massivel Notice that (4.11) is still gauge invari-
ant since it is equivalent to (4.9). The gauge transformation is now obtained

by replacing (4.7) into (4.10):

Y —> w8 Tyon+vl-simbu xoo -V

(x) —> cosBex) X + siv B oo Twe)+vul
% Y (4.12)

A‘u(/\’)% AYV (x) + %?P Q(X).

This means that our previous conclusion, that gauge invariance forbids the pres-—
ence of an Aﬁ term, was simply wrong. Such a term can be present, only the gauge
transformation is slightly more complicated; it must be accompanied by a trans-—

lation of the field.
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The Lagrangian (4.11), if taken as a quantum field theory, seems to describe
the interaction of a massive vector particle (Au) and two scalars, one massive (Y)
and one massless (x). However, we can see immediately that something is wrong
with this counting. A warning is already contained in the last term of (4.11),
which is non-diagonal between A.u and Bux. This tells us that we must be careful
before interpreting the particle spectrum. A more direct way to see the trouble

is to count the degrees of freedom before and after the translation:

Lagrangian (4.9) : One massless vector field: 2 degrees
Two scalar fields : 2 "
Total s 4 "

Lagrangian (4.11): One massive vector field : 3
Two scalar fields
Total : 5 "

Since physical degrees of freedom cannot be created by a simple change of variables,
we conclude that the Lagrangian (4.11) must contain fields which do not correspond
to physical particles. This is indeed the case, and we can exhibit a transforma-

tion to make the unphysical fields disappear:

3wy

Cv+pn] e ,

o) = 1
¥ Y2
AArJ(X) = B

(4.13)

4
p®+ - By Tex)

Replacing (4.13) into (4.9) we obtain:

(Ppe)™- f‘i- (2pvY ?2 (4.14)
y

The field z(x) has disappeared! Formula (4.14) describes two massive particles,
a vector (Bu) and a scalar (p). We see that we obtained three different

Lagrangians describing the same physical system. £, is invariant under the usual

- 53 -



gauge transformation, but it contains a negative square mass and therefore it is
unsuitable for quantization. £, is still gauge invariant but the transformation
laws are more complicated [Eq. (4.12)]. It can be quantized in a space containing
unphysical degrees of freedom. This, by itself, is not a great obstacle and it
happens frequently. For example, ordinary quantum electrodynamics is usually
quantized in a space involving unphysical (longitudinal as well as scalar) photons.
In fact, it is Ez, in a suitable gauge, which is used for general proofs of re-
normalizability, as well as for practical calculations. Finally £3 is no longer
invariant under any kind of gauge transformations, but it exhibits clearly the
particle spectrum of the theory. It contains only physical particles and they

are all massive! Actually, £, can be obtained from £, by specifying the gauge of

3
the latter. £, is non-renormalizable, by power counting, but, since it is gauge-
equivalent to £, it can still be used for practical calculations. This analysis

can be repeated verbatim for non-Abelian gauge theories with identical results.
The conclusion can now be stated as follows:

In a spontaneously broken gauge symmetry the gauge vector bosons acquire
a mass and the would-be massless Goldstone bosons decouple and disappear.
Their degrees of freedom were used in order to make possible the transition
from massless to massive vector bosons. This phenomenon has been discovered

by several people and it is known as the "Higgs mechanism".

This is the miracle that was announced earlier. Although we start from a
gauge theory, the final spectrum contains only massive particles. And now we
can state the most important theorem which really opened the way to all the wonder-

ful applications of Yang-Mills theories:

Theorem: A Yang-Mills theory, spontaneously broken, although it contains

massive vector bosons, remains renormalizable ('t Hooft, 1971).

MODEL BUILDING

Now that we have all the basic ingredients, we shall try to apply them to
the real world and construct realistic, renormalizable models of weak and electro-

magnetic interactions. The essential steps of model building are quite simple:

"Do-it-yourself kit for gauge models":

1) Choose a gauge group G.

2) Choose the fields of the "elementary particles" you want to introduce, and
their representations. Do not forget to include enough scalar fields to

allow for the Higgs mechanism.
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3) Write the most general renormalizable Lagrangian invariant under G. At this

stage gauge invariance is still exact and all gauge vector bosons are massless.

4) Choose the parameters of the Higgs scalars so that spontaneous symmetry break-
ing occurs. 1In practice, this often means to choose a negative value for the

parameter u?2,

5) Translate the scalars and rewrite the Lagrangian in terms of the translated

fields. Choose a suitable gauge and quantize the theory.

6) Look at the properties of the resulting model. If it resembles physics,

even remotely, publish it,.
7) GO TO 1.

Some remarks: Gauge theories give only the general framework, not a detailed
model. The latter will depend on the particular choices made in points (1) and
(2). A great variety of models is possible and this partly explains the popularity
of gauge theories. There is no point in describing every one which claims agree-
ment with experiment, which is a common characteristic of most published models,
see point (6). Nevertheless I shall demonstrate the efficiency of the seven—-point
program in a well-known example, the original model of Weinberg and Salam. I shall
restrict myself, at first, to the leptonic world. The reader who is not interested
in technical details is advised to skip the constructive part and go directly to

the final form, after step (5) has been performed.

Step 1: We need at least four vector bosons, two charged for ordinary weak
. . *
interactions, one neutral for the weak neutral currents ) and one for the photon.

It follows that the smallest possible group is SU(2) x U(l).

Step 2: We shall limit ourselves to the known leptons, so let us introduce
the electron and its neutrino as a two-component spinor and define its left and

right chiral parts:

Ve

Y = A L= %(HX;)*\% R= %(1-2(5)?. (5.1)

The muon and its associated neutrino are treated in exactly the same way. Further-
more, we need the Higgs scalars which are going to break the symmetry and give

masses to everybody. We learned in the last section that, for every vector boson

*) When the model was proposed the neutral currents had not yet been observed.
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which acquires a mass, there is a corresponding scalar which becomes unphysical
and decouples. Also, there is at the end at least one neutral scalar which
remains physical, namely the one which we choose to translate. Since we must give
masses to three vector bosons (the fourth, the photon, will remain massless), we
need at least four scalars, which we are going to describe by a 2 x 2 matrix @.

We now assign transformation properties to all these fields under the group

SU(2) x U(1). They are given by

Ji) su(?) :

A %,’ Bx) i%i" Yex)
L> e* L ) L
s Q'ii 4 (3~ Z;\Qa)g R=> R -2

¢~ 2 B $-> e

These transformation laws are determined by simple physical requirements.
For example, R must remain invariant under SU(2) otherwise we would have right-
handed, charged, leptonic currents. Its transformation properties under U(1l) are
determined by the requirement that the photon must couple only to charged particles
through a vector current. The transformation properties of & will be explained

below; g and g! are two arbitrary constants.

Step 3: We mnow write the most general, renmormalizable Lagrangian invariant
under (5.2). We follow the rules explained in Section 3 and we construct the
corresponding covariant derivatives. The requirement of renormalizability implies
that we should not introduce terms with dimensions higher than four. The result

is:

-~

1 A‘"-_ By, B

I

-~

+ R ‘XP [’b‘..-ua,(—ﬂca)B

ZL3G6R -ZRGEIL

s Te|Lo 81y PeB - ig A, 23)°
~ 4R T (2F) -2 T (22 )2,

+t;(w[3 _\_i_%fBﬂ,% ,fr L
1R

(5.3)
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where Ku and Bu are the vector gauge bosons for the groups SU(2) and U(1),

respectively, and G is a 2 X 2 real, diagonal, numerical matrix of the form

<3| O
Cp:(o G-,_) . (5.4)

The vector boson kinetic energy terms are given, as usual, by:

== - - - -3 (5.5)

A'”V = 3'” AV- -av AY‘ »%Ar’XAV

Bkv = 'B\W BV.. 2, B!" , (5.6)

Some remarks on (5.3): 1) As expected, the vector bosons KU and %u are massless.
ii) L and R have different transformation properties. It follows that a fermion
mass term of the form Y = LR + RL is not invariant. Thus the fermions are also
massless. They will acquire a mass, together with the vector bosons, via the
Higgs mechanism. For this purpose the Yukawa couplings on the fourth line of
(5.3) are important. The transformation laws of ¢ were determined specifically
in order to allow for those terms. iii) The Lagrangian L contains two coupling

constants, g and g/. It has become customary to define an angle
+ B, = %”// . (5.7)
YW ¢

Step 4: According to the analysis of the previous section we choose u2 <o

in order to obtain a spontaneous symmetry-breaking solution.
Step 5: We now translate the field ¢,

¢~ d+uvq, (5.8)

V2
where 1L denotes the unit matrix. The result of this translation is rather

lengthy, but we shall single out the most interesting terms:

i) The Yukawa couplings give rise to terms:
~VLGR+hec. = -V G, VY, ~v 6, ¢é¢ (5.9)

where we have used the form of G given in (5.4). We therefore see that we

have generated fermion mass terms. Since we want to keep the neutrino
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ii)

iii)

massless, we choose

3
)

c
o)

G

1 (5.10)

=0 —_> Mv'_'O

As expected, we also generate mass—terms for the vector bosons. They come

from the vector boson ® couplings on the fifth line of (5.3) and they read:
1 zuz;z + 1 g*yrB? 4 1 20 (5.11)
2 A AN | Y e o '

As we see, there exists a non-diagonal mass-matrix between the two neutral

bosons, BU and Aﬁ, given by

)2

M, _ =

AP

og |=>

/

vt [ % %3 (5.12)
A S

It has one eigenvalue equal to zero and the corresponding boson will be

identified to the photon. By diagonalizing (5.12) we write (5.11) as:
122 WEwk T+ 1y (a2 Z, (5.13)
A g U CETY Tk

where we have defined:

+ 4 1 .. A2
- = A -1
\A/ = VEE /Q’u't } P’) —_— b 24 + E:?}L’

(5.14)

- 4 | _ Mw+
Zr,: $m9w BY’+ wsew A;AMZ—%Vf*}ﬂ‘U.—_ “;

7w

,x’u = —-6¢7$E)“, ano -*-‘5:Vl19vv [¥?F,~4§ \A4/¥ =0 .

1+

A.11 is the photon with zero mass. W are the conventional charged intermediate

=

vector bosons with mass gv/2, and Z 1is a neutral vector boson with mass

=

gv/2 cos By.

The masses of the scalar mesons are obtained from the last line of (5.3).

If we put

& =1 Cql+iTy), 5.1
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we obtain

T 2
WS, =27v . M= 0, (5.16)
9 g X
The(f—field remains physical. The three X-fields are massless. They corres-
pond to the would-be Goldstone bosons and they do not represent physical
particles. Their degrees of freedom were used to create the extra polariza-

+
tion states required to make W and Z massive.

iv) The couplings of the photon are the usual electromagnetic ones:

r_ N
; ' Cun 7y, @0 Ao (5.17)
2, /2
™9
which determine the electric charge e to be
/
e = %'%' =

The photon-charged vector boson couplings correspond to a gyromagnetic ratio

aérs\‘w Oy . (5.18)

equal to two.

v) The ordinary weak interactions of charged currents are of the form

+

t,(x) + hc. (5.19)

X JooxPeuyy e W
22 YT e

and the Fermi coupling constant is

2
— 2 .
Y2 fw?,

Combining (5.14), (5.18), and (5.20) we find:

W, 2 = 735 GeV y o m, 2 F5 Gev, .o

which is a very striking prediction. In fact the existence of very massive

intermediate bosons is a feature common to all unified theories.

vi) The neutral currents are of the form:

q

$Papcmy T L T o

Notice that they do not have a definite helicity.
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There are all sorts of other couplings induced by the translation, but we
will not give them here explicitly. They can be computed from (5.3). Notice
only that there remain Yukawa couplings of the %Lmeson to the leptons with
strength proportional to the lepton masses. Notice also that the‘f-mass can be

arbitrarily large.

This is the simplest leptonic model which is consistent with all present-day

experiments. It can be extended to a renormalizable theory (the extension requires

the introduction of hadrons). Its main experimental prediction, which was bril-

liantly verified, was the existence of neutral currents.

EXTENSION TO HADRONS

We shall discuss here the problems connected with the extension of these
ideas to the hadronic world. Since we want to use the field theory language, we
are again confronted with the old question of deciding which hadrons are elemen-
tary. We therefore anticipate a certain degree of arbitrariness. We shall pre-
sent all arguments in a quark model framework, but the results depend only on the

underlying symmetries and not on the actual existence of physical quarks.

6.1 Charm

The most astonishing prediction of all gauge theories can be stated in the

form of the following theorem:
The symmetry group of strong interactions is larger than SU(3).

The proof is very simple: Let q represent the three basic quarks p, n, A, The

charged current has the familiar Cabibbo form:

P -

q= 3 ) l‘y»: 1¥p (1+Ys) C’+q ) (6.1)

+ . . . .
where C' is a 3 x 3 numerical matrix given by:

o <0ov® sSine
ct =
— o © o (6.2)
o o o
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and 6 is the Cabibbo angle. The complex conjugate current h; is formed with C ,
the transposed matrix of c'. Ina gauge theory involving h' and h;, the neutral

(0) H

current will be related to their commutator h’ °, which is

U

k(: = (T'A'r' (1+Bg\ Coq (6.3)

(] o]
c=[chc] o ot
= 5 = O -wsP -wsBsive . (6.4)
0 - w8148 ~siue

We see that C° has non-vanishing off-diagonal matrix elements coupled to n\ or
Xn. This means that in a gauge theory there will be a strangeness—changing

neutral current and AS = 2 transitions, i.e. processes such as KE > utu,
K+ -> ﬂ+v5 with amplitudes comparable to K112 and Kes, as well as a K, -K, mass

or

difference due to first-order weak interactions. Since such processes are
definitely ruled out by experiments, we conclude that we must enlarge the

symmetry of strong interactions so that the commutator (as well as anticommutator)
(6.4) becomes a diagonal matrix. It turns out that this can be achieved in a
variety of ways as long as the corresponding matrices are larger than 3 X 3, The
detailed predictions will depend on the particular choice, but in any case, we
shall have new hadrons carrying new quantum numbers. We shall call these quantum
numbers collectively '"charm', and it has always been emphasized that their experi-
mental discovery would constitute the most dramatic test of these ideas. It is
therefore easy to understand the general enthusiasm caused by the announcement

of the new particle discoveries at Brookhaven and SLAC. Since then, the news has
kept on coming in at a breathtaking pace. It is not the purpose of these lectures
to review the experimental situation in detail, but we have all heard in Wiik's
lectures that hadrons carrying new quantum numbers actually exist. It is exciting
to think that abstract theoretical ideas, based essentially on logical and aesthet-

ic arguments, have led to the discovery of a whole new area in particle physics.

6.2 3+ 1 =5U(4)

As an example of a larger symmetry, I shall present the SU(4) scheme. One
new quark p’ is introduced, whose quantum numbers are indicated in the table

below: I = isospin, I, = third component, Q = electric charge, S = strangeness,
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and C = charm. The Gell-Mann Nishijima formula now reads:

Q”'Ia* B+SH<C (6.5)

)
2
where B is the baryon number.
I 1, Q S C
p’ 0 0 %é 0 1

P e " 2 0 0

n 1/2 - 1/ 2 - 1/3 0 0

A 0 0 YA -1 0

The model is based on the principle of lepton-hadron symmetry. Let q and £

denote the quartets of quarks and leptons, respectively:

3 3‘
q= .; , 0= QZ" , (6.6)

'AI

They have similar charge spectra: Q, Q, Q-1, Q-1 (Q = % for quarks and 0 for
leptons), therefore, they have similar electromagnetic interactions. We postulate
that they also have the same weak ones. The charged leptonic weak currents are

known:

-

e 1
Q;: Qm,,(ﬂb’g.‘)cje ) Cz: <o o >) (6.7)

+ . . . .
where each element of CQ is a 2 X 2 matrix. We thus write the same matrix for
the charged hadronic current. The weak and electromagnetic Lagrangian will be of

the form:
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L= Tq 89+ & 4,014

(6.8)

1, (g Coq + St TN,

where Qq and Ql are the diagonal 4 X 4 charge matrices of quarks and leptons.

Now we introduce the quark masses, possibly via a Higgs mechanism. The mass term
will be of the form qMq with M some 4 X 4 matrix. In general this matrix will
not be diagonal on the basis on which we have written (6.8). The diagonalization

. . . . + .
must leave Qq invariant and, therefore, it will change Cz into

(o V"'\ ‘ 3 -siv€ C0s0 )
o o U= .

+
Cq= ) wsd oivd

9

(6.9)

The charged hadronic current now becomes

W= G (rye) €4 = P (irys ) (neosds o)

Py (Y (-n 5B +) wse) = (6.10)
= PXY’ (1+K,3Y)Cr ?’ﬂ, (1+y,) Ne s

where 6 is the Cabibbo angle and n, and Ac are the two orthogonal combinations

written in (6.10). It is now straightforward to verify that

° - 1 -
Cﬂ= Lc;)c?]r (a °) ; C'Z‘)Cﬂfﬂ, (6.11)

-1

which means that no strangeness— or charm-changing neutral currents are induced.

The introduction of the fourth quark means that the natural symmetry of
strong interactions is SU(4). This implies the existence of a large variety of
"charmed" hadrons. For example, the 0 mesons, which are made out of qq pairs,
form a 4 x 4 = 15 + 1 representation. Decomposed in SU(3) representations, the
15 contains the usual octet of C = 0 mesons, a triplet (3) with C = -1, another

one (3) with C = +1, and a singlet with C = 0. The 54+ baryons form a
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20-dimensional representation, and the same is true for the %&+ resonances.

Strong interactions conserve charm, so the lightest of these states decay only
weakly. As you know, heavy, but weakly decaying hadrons, giving predominantly
strange particles, have been observed in ete” annihilations as well as in neu-

trino reactions. They fit nicely into the charm scheme.

An important question about these new charmed particles is the order of
magnitude of their mass. Phrased differently, we would like to know how badly
SU(4) is broken. In the language of the quark model, this breaking is given by
the mass difference mp,-mp. If the order of magnitude of this difference is
not restricted by the theory, the prediction of charm is not all that interesting.
The remarkable feature of gauge theories is precisely that they predicted low-
mass charmed hadrons, not heavier than, say, 10 GeV. Do not forget that charm
was introduced in order to suppress the unwanted AS = 1 neutral currents and the
AS = 2 transitions, and we can prove that this suppression is not efficient if

the charmed particles are very heavy.

The proof of this statement is based on the remark that, in gauge theories,
diagrams involving two intermediate W's are not of order G2, but rather Ga. Let
us then look at the diagram of Fig. 5a which contributes to the process

o+ uy” or K{ >uuT. It is of order

q
~ 06 elwel A~ Ws B %5Vl Ga

2
YW“J

because we assume that my is the largest mass around. This is disastrous because
. . . . + - — .
it gives a branching ratio for K > u'y of the order of 10 “, i.e. at least four

orders of magnitude too big. Fortunately there is now the diagram of Fig. 5b

n coso T n -sin® U
F— - —
W+
W+

P Vi

g

A sin® p A cos© T
(a) (b)

Fig. 5
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which is proportional to

%‘l
—~wsBsivB I A —- wosOsinb Ga .
m<
w
The sign difference is crucial and comes from the structure of the weak current,
Eq. (6.10). 1If SU(4) were exact, the two diagrams would cancel identically. Now
their sum gives a contribution

2 7
wh-m,
~ w0 sivd Ga L

w3,

Therefore, in order to have a branching ratio of the order 1078-107°, we need

Am/mw " 107!, i.e. relatively light charmed particles!

6.3 Colour

Charm is not the only modification which gauge theories bring to the tradi-
tional three-quark model. They also require the introduction of colour. The
difference is that we had no reason to introduce charm besides the one we mentioned
above, while we already needed colour outside gauge theories. There were two main

reasons:

i) The spin-statistics properties of the quarks. The introduction of a new
quantum number, the colour, allows the construction of a totally antisymmetric
wave function for the nucleon, without orbital angular momenta among the
three quarks.

ii) The 7% » 2y lifetime. Back in 1949, J. Steinberger had calculated this

0

decay rate assuming that 7  was a nucleon-antinucleon bound state.

At the one-loop level (Fig. 6), he found the correct answer. Today we
believe that pions are bound states of quark-antiquark pairs, and the same calcu-
lation (due to the fractional charges of the quarks) gives an answer which is a

factor of three too small. The introduc-
tion of the three-coloured quarks restores
the right result. Let me make the logic
Y of this argument clear: I do not mean
_____ that we want to introduce such a funda-
TIO Y mental notion as colour based simply on
the result of the lowest-order calculation.
Fig. 6 No one would take perturbation theory with
respect to strong interactions so seriously.

However, in this case, we have a much
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stronger reason. We can show that in every theory of strong interactions which
satisfies Current Algebra and PCAC, the result of the one-loop calculation is
not changed by higher-order correctionms. This, together with the value of R in

+ - . . . . . .
e'e collisions, makes the introduction of colour inevitable.

It is remarkable to notice that we can arrive at the same conclusion by a
completely independent argument based on the renormalizability of gauge theories
of weak and electromagnetic interactions. In fact, we can show that the standard
Weinberg-Salam model for leptoms is, strictly speaking, non-renormalizable because
of the appearance of the well-known triangle anomalies (the Adler-Bell-Jackiw
anomalies) in the Ward identities of the axial currents. It turms out that, in
the framework of this kind of models, these anomalies cancel only if the electric
charges of all elementary fermions sum up to zero. Since the known leptons have
a sum equal to -2 (e, W), we need precisely three colours of fractionally
(Gell-Mann/Zweig) or integrally (Han-Nambu) charged quarks, including the charmed

ones, in order to satisfy the no-anomaly condition.

6.4 The "Standard" model (C. Bouchiat, J. Iliopoulos and Ph. Meyer)

This is the extension of the Weinberg-Salam model to the hadronic world.
This extension is completely straightforward. We have four quartets of elementary

fermions; the leptons

Ve P P P
Vu P P P
e n n n
U A A A

blue white red

and the three-coloured quarks, and all are treated identically. Thus we form

doublets:
‘ ; ’
\)Q \)Pa . P P
e I\ )0 e ) )\ A
blue, white, red
with n, =n cos 6 + X\ sin 6, Ac = -n sin ® + A cos O, and for each doublet (there

are eight of them) we repeat the construction of Section 5. Notice that in SU(4)

all quarks participate in weak interactions, while in SU(3) the Ac quark does not.
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We can try to go beyond this standard model and give real meaning to the
"lepton-hadron symmetry" by putting leptons and quarks in the same representation.
There exist already several such models, but there is no time to go into them now.
They usually tend to violate the separate conservation of baryon and lepton num-
bers, and we need super-heavy W's -- sometimes as heavy as one gramme'! -- in
order to suppress unwanted transitions such as proton decays. Their attractive
feature is that, sometimes, they suggest an intimate connection between gauge

theories and gravity.

STRONG INTERACTIONS

7.1 Are strong interactions simple?

I believe that by now everybody is convinced that non-Abelian gauge theories
describe the weak and electromagnetic interactions in terms of a renormalizable
field theory. This, by itself, represents enormous progress compared to the
phenomenological description that we used to have. However, the impact of gauge
theories was in fact much deeper and they have considerably changed our way of
thinking. For example, each one of us has often tried to explain elementary par-
ticle physics to non-specialists, and a standard way of starting was to talk
about the different interactions. We were then inclined to write, schematically,

the Lagrangian of the world as a sum:

L& +‘fe_m+ %ww,‘*“") (7.1)

$+ron%

where the different pieces were supposed to be independent from one another.
With gauge theories this is no more possible., The reason is that non-Abelian
gauge theories, unlike ¢“ or Yukawa interactions, are only renormalizable if
every term in the Lagrangian, no matter what its relative strength, respects the
Ward identities. Such a requirement severely restricts the possible forms of
all interactions including the strong ones. The ultimate goal is to find a non-
Abelian gauge theory for which £ is so restricted that all symmetries of strong
interactions arise naturally. Obviously, I do not have this ultimate model to
hand, but several investigations of its possible properties tend to suggest that
the domain of non-Abelian gauge theories covers in fact all elementary particle
physics. This may sound strange since we were told several times that field
theory, at least in the form of renormalized perturbation theory, is not applic-
able to strong interactions. However, I would like to remind you of a remarkable

evolution which took place slowly over the last years.

- 67 -



When in the past we were trying to discover the possible forms of strong
interactions, we were using, most of the time, the results from hadronic collisions.
The resulting picture invariably appeared to be too complicated to allow for a
simple interpretation. We have by now good reasons to believe that this complexity
should not be attributed to the fundamental interactions themselves, but is in-
stead due to the fact that the objects we are dealing with, namely the hadrons,
are themselves too complicated. It is as if we were trying to discover quantum
electrodynamics by studying the interactions among complex molecules. The great
progress made in the last decade was the realization that the strong interactions
look completely different, in fact much simpler, if we study the processes in
which the different current operators are involved. We thus arrived at the con—
clusion that, as far as the basic strong interactions are concerned, the currents

may be more fundamental objects than the hadrons.

This idea grew gradually through the successes of Current Algebra and the
surprising results from the deep inelastic lepton-nucleon scattering and ete
annihilation. The simplicity of strong interactions in these reactions is
expressed by the parton model, which assumes that the target nucleon is made out
of an assembly of "elementary" constituents which interact with the incident
leptonic current as free, point-like charges. Indeed, strong interactions have
become too simple; it is as if they did not exist: As Gell-Mann said: "... in
deep inelastic scattering Nature reads only free-field theory books'". The theo-
retical question now is, How can the partons be so tightly bound in order to form
a nucleon and still act like free particles in deep inelastic collisions? Stated
differently, the same question is, Under which conditions may a fully interacting

field theory simulate a free-field theory behaviour?

In order to answer these questions let us look once more at the experimental
results. In deep inelastic scattering we measure the structure functions F..
We would expect them to depend on two variables, Q% and v, where Q is the momentum
transfer among the leptonms and V = 2 pQ, p being the momentum of the target
nucleon. Instead we find that when both Q? and v become large with fixed ratio
x = Q%/v, the Fi's depend only on x. This result is very interesting, precisely
because it is very easy to understand it by using a naive (and wrong'!) reasoning:
The Fi's are dimensionless. Therefore they can only depend on dimensionless
variables: Fi(x, M2/Q?), where M? is some characteristic mass (e.g. the nucleon
mass). When Q* + » with fixed x, M?/Q? » 0 and we are left with only the
x-dependence. In other words, this argument states the intuitive idea that at

very high energies the masses are unimportant.

This is a very simple argument, unfortunately it is also a wrong one! Every-

body who has ever calculated a one-loop Feynman diagram knows that the result often
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contains factors of the form 1n(M2/Q?), and consequently the amplitude is not an
analytic function of the masses. We see, however, that the answer to our questions
lies in a better understanding of the mass-dependence of the amplitudes in field

theory. This dependence is studied using the Callan-Symanzik equation.

7.2 The Callan-Symanzik equation

Let us consider the simplest renormalizable field theory in four dimensions,

which is the self-interacting, neutral, scalar field:

<t ¢» 2 4 L 20%0 - 2 oY (7.2)
"i( M>°cxﬂ.2}~,q>,x) i ¢ ),

where the subscript 0 indicates that all these quantities are unrenormalized. We
know that Green functions calculated from (7.2) are often divergent, but they can
be defined if we introduce a suitable cut—off which we shall call A. For example,
we can imagine that we cut all loop integrations at momenta of the order of A.

In this case the unrenormalized Green functions will depend on:

(2v)
r" CPrsy P2y ) ‘00)%0) A), (7.3)

where szn) is the unrenormalized Green function with 2n external lines carrying
momenta P, , ..., P, *). Since we are interested in the mass dependence, it is
natural to try to compute the derivative of ngn) with respect to Y,. This is
relatively easy because the only dependence of I'y on U, comes from the different
propagators of the form (kz-uﬁ)'l. But since I shall never use the explicit

. . . . . . a2
form of this derivative, let me just define a new function T§ n) by

e ) ,
3\“.’ ro ¢ P.)...) Pzw} kﬂ)%‘o) A) = F ° (¢ P.)...)F“) ‘N')%”,,A) . (7.4)

Until now we have not used the fact that the theory is renormalizable. This
means that there exists a well-defined procedure that allows us to take the limit
A » o and obtain the renormalized Green functions, which I shall denote by F(Zn).
For the ¢* theory this procedure requires the introduction in (7.2) of counter-
terms which will renormalize the mass, the coupling constant, and the wave func-

tion of the field. Consequently we obtain F(zn) from szn) by replacing the bare

%) TFor technical simplicity we shall consider r(zn) to be the so-called "one-
particle irreducible" (1-PI) Green function which is defined as the sum of
all Feymman diagrams with 2n external lines which cannot be separated into
two disconnected diagrams by cutting only one internal line.
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quantities U, and go by their renormalized values U and g, and by multiplying
1
each external line by the wave function renormalization which we call 232. In

other words, the fact that (7.2) is a renormalizable theory implies the existence

of functions:

}"(}"‘“%.)A) ) %(‘”o,%o)A) ) Z%(}”o,?o) A) ) (7.5)

such that
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+ 0( 4/&1A>) 7.6

where 0(1/1n A) stands for terms which vanish in the 1imit A > ©, In the same

A
. 2
way we can write for Pg n)=

A () A(zv)

Co Cpiyey Pew) oy 4oy ) = q»g,ea, N2 (p,,%”/!)r%,) By )
+0 (1/tn),

7.7

where F( ) is the corresponding renormalized function and # is another function
of the form (7.5). Notice that the renormalized Green functions F( 'n) and P(zn)
are independent of A; u and g are the physical values of the mass and the coupling

constant, respectively.

The Callan-Symanzik equation is now obtained by combining (7.4), (7.6), and

(7.7), and using the chain rule of differentiation:

2. Z r(zw) ]:.\(?u?_ r(zﬁ [2 rCZ'”]
TN

‘aQnZ, 2 r(z-s '3},,:. ’3}, > 'nga.)
> ’v, ’B)n‘a}u’- fa},,z 23

(7.8)

H
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This equation can also be written as

Gzv)
[F5 P2 oy T T s gy =

A ¢2u) 7
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It is easy to show that the functions B, Yy, and § approach well-defined
limits when A -+ « and, since they are dimensionless, they can only depend on g.
Equation (7.9) is the Callan-Symanzik equation which involves only renormalized

quantities.

7.3 The deep Euclidean region

The Euclidean region is the one in which all momenta Pys +e+5 P, are
Euclidean, i.e. they have real space parts and imaginary time parts (pi < 0). Let
us now multiply all the pi's with a real parameter A: F(Zn)(kpl, cees AP35 M,8).
The deep Euclidean region is reached by choosing A very large, while keeping any
partial sum among different pi's different from zero (except, of course, the
trivial sum of all momenta which vanishes from energy momentum conservation). In
other words, in the deep Euclidean region all masses, as well as all momentum
transfers, become large and negative. In that sense it is the most unphysical
region. Nevertheless, we shall see that the study of Green functions in that

region presents a great physical interest.

The first step is to simplify the Callan-Symanzik equation by using a

theorem, due originally to Weinberg. It states that, to every order of perturba-

f(zn) (2n)

tion theory, by at least a power of A~!

is negligible compared to T
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when A - ©, Thus, in this limit, the equation becomes

(2w
[k%," + B4 33% +oy) T,Z )Cr\vu---ﬁm.‘) W4) =0,

(7.13)
where P;Zn) denotes the asymptotic form of F(zn) when A gets large.
We can still simplify (7.13) by ordinary dimensional analysis: P(zn) has
dimensions uu—zn and, therefore, it can be written as

y-2m _ C2w)
r (ZPQ.-)]PZ“;}O 4= o F ¢ q;: oy ‘P:“ ,‘3—) (7.14)

Let us now define a new function:

(2\\) 2\) -4 (¢ Zn) L’ -"2“ (‘2‘1)
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By definition, ¢;zn) satisfies (7.13) and is a function of A/u. Therefore

(2v) C2w)

}N%”@ __';‘%CP . (7.16)

Using (7.16) we can trade the mass derivative in (7.13) for one with respect to A,

which is the parameter that scales all momenta:

(2m)

[ 9!%) -mmf)]‘? (370"')3!’:\.')}")‘3):‘" (7.17)

(7.17) is the desired form of the equation.

7.4 Solution of the Callan-Symanzik equation

Equation (7.17) can be solved by using Monge's standard method. We change

variables from (A,g) to (\,g), where g is a function of A and g satisfying

- ?\ 5t P%\ ] % "4 =0 (7.18)
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with the boundary condition

%’c*l,?).):%,. (7.19)

Equation (7.18) is equivalent to
>
A%k =P . (7.20)
22

The general solution of (7.17) is now given by

(2v) (2w _ A0 o,
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(7.21)

The physical meaning of (7.21) is clear. Scaling all momenta of a Green
function by a common factor A and taking A large, has the following effects:
i) it multiplies every external line by a factor (the exponential of 7.21), and
ii) it replaces the physical coupling constant g by an effective one g which is
the solution of (7.20). 1In other words, in the deep Euclidean region, the effec-
tive strength of the interaction is not determined by the physical coupling con-

stant g, but rather by g.

7.5 Asymptotic freedom

The fact that the coupling constant of a renormalizable field theory depends
on the external momenta can be understood by a simple classical argument. Let
us take electrodynamics. The coupling constant is the electric charge. Its
magnitude is measured by its effects on surrounding charges. Let us assume that
we have a charge +Q inside a polarizable medium, for example water. We bring
close to it another charge —Q. The water molecules between the two are polarized
by the electric field and they tend to screen the two charges. The net result is
that the charge -Q sees an effective value of the positive charge, which depends
on the distance between them. At large distances (small momenta) the effect of
the screening is very important and the effective value of the charge tends to
zero. At small distances (large momenta), on the other hand, this value gets
larger. In a quantum language the same effect occurs also in the vacuum because
of vacuum polarization. Equation (7.20) allows a complete study of this pheno-

menon.
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Let us assume that, for A = 1, we start with a coupling constant equal to g.
Then the condition (7.19) tells us that g(l,g) = g. We vary A; g varies and, in
general, E(A,g) # g. Equation (7.20) shows that if 8 > 0, E increases with in-
creasing A, and it will continue to increase as long as B remains positive. The
limit of g when A - « will be the first zero of B on the right of the initial
value g. If B(x) has no zeros for x > g, then g > ® for A >+ ©, Now let us take
the case when 8(g) < 0. Then g decreases with increasing A and %ig g(A,g) = first

zero of R(x) for x < g. Finally, if B(g) = O, 3g/oA = 0, and g is independent of A.

This analysis shows that we can classify the zeros of B in two classes: Those

8 3
\_\_>g 7___, =g

(a) (b)

Fig. 7

of Fig. 7a are "attractors", i.e. if we start somewhere in their neighbourhood,

g approaches them for A > », Those of Fig. 7b are "repulsors", i.e. g goes further
away from them when A - ®©, An attractor is always followed by a repulsor (multiple
zeros must be counted accordingly). The conclusion is that the asymptotic be-
haviour of a field theory depends on the position and nature of the zeros of the

function B.

As long as perturbation theory is our only guide, we cannot say anything
about the properties of B(x) for arbitrary x. We do not know whether it has any
zeros, let alone their nature. The only information that perturbation theory can
hopefully provide is the behaviour of B(x) at the vicinity of x = 0. We know
that B(0) = O because g = 0 is a free field theory. The nature of this zero
(attractor or repulsor) will depend on the sign of the first non-vanishing term
in the expansion of B(g) in powers of g. But this expansion is precisely pertur-
bation theory. Therefore the properties of the zero of the B-function at the
origin can be extracted from perturbation. If B starts as in Fig. 8a, i.e. from
positive values, the origin is a repulsor. The effective coupling constant will
be driven away to larger values as we go deeper and deeper into the deep Euclidean

region. On the contrary, if the first term of B is negative the origin is an
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(a) (b)
Fig. 8

attractor. If we start somewhere between the origin and the next zero of B, the
effective coupling constant will become smaller and smaller and it will vanish

in the limit. Such a theory is called "asymptotically free".
And now we shall state the following, very important theorem:

Out of all renormalizable field theories, only the non-Abelian

gauge theories are asymptotically free.

This theorem is proven simply by exhaustion. We calculate the B-function in
the one-loop approximation for ¢“, Yukawa, QED, and non-Abelian gauge theories.

Only the latter have B negative.

7.6 Physical applications

Until now we have worked into the deep Euclidean region, which is an unphysi-
cal one. We need a careful and rather technical analysis, in order to show that
these considerations apply also to the asymptotic region of e*e” annihilation and
that of deep inelastic lepton-hadron scattering. They do not apply, at least not
in a straightforward way, to ordinary hadronic collisions. We shall skip this

part and go directly to the physical consequences.

The message of the last theorem is clear: If we want to understand the
success of the nalve parton model in a field theory language, we must assume that
strong interactions are described by non-Abelian gauge theories. In the deep
inelastic region, asymptotic freedom has already set in and the effective strength
of strong interactions has become very small. In the opposite limit, namely at
very small external momenta, Eq. (7.20) shows that the effective coupling constant
increases, and it may even tend to infinity if B(x) has no zeros for x > 0. We
could not dream of a more convenient field theory to describe strong interactions.
It has all the desired properties: asymptotic freedom and infrared slavery,
vanishingly small coupling constant at very short distances and infinitely large

at very large ones. It gives us a framework for understanding at the same time
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the free character of the quarks when probed in the deep inelastic region and
their strong interactions in ordinary experiments. Furthermore, we hope that
their infinitely strong coupling constants at large distances may provide the
mechanism for the permanent confinement of the partons (quarks as well as non-

Abelian gauge gluons) inside the hadrons.

There are several ways of realizing a non-Abelian gauge theory for strong
interactions, depending on the quark model that has been assumed. Among them
there is one which is particularly simple and is favoured by most theorists. It
uses the Gell-Mann/Zweig fractionally charged quarks in three colours and four
species (including charm), and it assumes that the gauge group of strong inter-
actions is the group SU(3) of the colour, namely the one that mixes the three
columns of blue, white, and red quarks leaving the rows unchanged. We often
denote this group by SU(3)' in order to distinguish it from the ordinary SU(3),
which mixes the last three rows of the quarks, leaving the columns, as well as

charm, unchanged.

The most important consequence of this scheme is that it allows us to cal-
culate the expected violations of scaling in deep inelastic experiments. The
basic assumption is that we have already reached sufficiently high energies, so
that the effective coupling constant of strong interactions is small and we can
use the results of low-order perturbation theory. We can thus predict the scaling
violations at FNAL or SPS energies by using, as input, the data from SLAC. For
example, the observed large y-anomalies in antineutrino reactions at FNAL have
been fitted recently by using this standard model. It is too early yet to tell
whether such fits are successful, but the important point is that the hypothesis
of asymptotic freedom gives well-defined predictions which can be tested experi-
mentally. With precise measurements (v 1-5%) of the structure functions of deep
inelastic 1 or v scattering at FNAL or SPS, for different values of x and Q?%, we
can: 1i) test the idea of asymptotic freedom experimentally and, if the answer is

positive, ii) determine the gauge group of strong interactions.

CONCLUSION

We tried to combine all available experimental results from all processes
involving currents, at low energies as well as in the deep inelastic region, and
we came to the conclusion that a consistent picture arises if we postulate that
all interactions among elementary particles, from the strong down to the gravita-
tional ones, are described by non-Abelian gauge theories. We are thus free to
speculate on possible ways of obtaining a really unified picture in which all of
them will be different manifestations of a single fundamental interaction. And

these speculations are no longer in the domain of science fiction, but in that of
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serious scientific investigation. All this enormous progress in our understanding
of elementary particles was made during these last years. Using a familiar ex-
pression, I would say that we have been through great vintage years. They were
certainly the most exciting I can possibly remember and, according to several of
my more experienced colleagues, they were the most exciting for a long time.

Both theory and experiments made fantastic progress, which was unprecedented in
recent history. And, more important, the progress was parallel and complementary.
Theoretical ideas were initiating successful experiments, and experimental results
were stimulating further theoretical work. We have to go back many years, at
least as far as the discovery of parity violation, in order to find a similar
fruitful cooperation. But I believe that today's results will prove to be more
fundamental and far-reaching. Nor are we yet at an end. We are still actively
involved in exciting theoretical as well as experimental work and we are looking

forward confidently to even greater discoveries.
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